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ABSTRACT

Modern memory access schedulers employed in GPUs typi-
cally optimize for memory throughput. They implicitly as-
sume that all requests from different cores are equally im-
portant. However, we show that during the execution of a
subset of CUDA applications, different cores can have dif-
ferent amounts of tolerance to latency. In particular, cores
with a larger fraction of warps waiting for data to come
back from DRAM are less likely to tolerate the latency of
an outstanding memory request. Requests from such cores
are more critical than requests from others. Based on this
observation, this paper introduces a new memory sched-
uler, called (C)ritica(L)ity (A)ware (M)emory (S)cheduler
(CLAMS), which takes into account the latency-tolerance of
the cores that generate memory requests. The key idea is to
use the fraction of critical requests in the memory request
buffer to switch between scheduling policies optimized for
criticality and locality. If this fraction is below a threshold,
CLAMS prioritizes critical requests to ensure cores that can-
not tolerate latency are serviced faster. Otherwise, CLAMS
optimizes for locality, anticipating that there are too many
critical requests and prioritizing one over another would not
significantly benefit performance.

We first present a core-criticality estimation mechanism
for determining critical cores and requests, and then dis-
cuss issues related to finding a balance between criticality
and locality in the memory scheduler. We progressively de-
vise three variants of CLAMS, and show that the Dynamic
CLAMS provides significantly higher performance, across
a variety of workloads, than the commonly-employed GPU
memory schedulers optimized solely for locality. The results
indicate that a GPU memory system that considers both
core criticality and DRAM access locality can provide sig-
nificant improvement in performance.

1. INTRODUCTION
Graphics Processing Units (GPUs) are becoming increas-

ingly popular for general purpose computing due to their ca-
pability in providing large improvements in performance and
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energy efficiency compared to CPUs [1–3,11,24,49,55–57,59,
69,77,80,90]. GPUs achieve significant speedups by exploit-
ing high thread-level parallelism (TLP). They launch thou-
sands of threads across multiple cores to mask the perfor-
mance bottlenecks of a single thread. Threads are typically
grouped into fixed-sized batches known as warps or wave-
fronts. To serve the high memory-demands of thousands
of concurrently executing threads, many modern GPUs use
GDDR5 memory, which typically has 3-4 times the peak-
bandwidth of the high-end DDR4 memories used in chip
multiprocessors.

Although high-bandwidth memory systems have increased
GPU performance substantially, memory bandwidth is still
precious and a critical performance determinant [27, 31, 39,
41, 43, 68, 72, 88]. In fact, it will be more so as compute
resources on GPUs continue to increase [28, 38, 41, 43]. To
address this, a large body of work has focused on improving
bandwidth utilization (e.g., [4,7,40,41,68,88]), and caching
efficiency in GPUs (e.g., [5, 35, 41, 58, 75]). However, past
works primarily focus on improving application performance
by treating all threads and memory requests with equal
importance. This phenomenon stems from the fact that
GPUs typically focus on improving the collective perfor-
mance of multiple concurrently executing threads, by over-
lapping their execution. In the same vein, the commonly-
used memory request scheduling policy, First-ready First-
Come First-Served (FR-FCFS) [73, 74, 93], implicitly as-
sumes that all memory requests are equally critical for over-
all performance, and hence, it aims to maximize memory
data throughput rather than minimize latency of specific
requests or cores.

We observe that, in a subset of CUDA applications, due
to the contention of memory requests from different cores
in the memory system (along with interconnects and shared
caches), and the inability of the FR-FCFS memory scheduler
to distinguish between the memory requests originating from
different cores, GPU cores experience significant variation in
average memory access latencies. Due to such variation, the
number of stalling warps that belong to the cores that suf-
fer from higher memory access latencies is typically higher
than that of other cores, making the former type of cores
less latency tolerant, i.e., more critical for overall perfor-
mance. Thus, because different cores have varying degrees
of tolerance to latency during execution, their corresponding
memory requests have varying degrees of criticality.

In contrast to the purely locality-focused memory sched-
ulers, our goal in this work is to design a memory sched-
uler that is cognizant of the latency tolerance of cores. One
simple idea based on our observation is to detect and al-
ways prioritize critical requests over non-critical requests.



As the cores that lack enough warps to hide the long mem-
ory latencies are more likely to quickly stall for the data to
come back, prioritizing requests from such cores in the mem-
ory controller provides a way of pro-actively avoiding them
from getting stalled. However, we find that such a memory
scheduler that is focused purely on core criticality degrades
DRAM access locality significantly. This motivates us to
explore more intelligent memory scheduling schemes that
consider both criticality and locality. To this end, we in-
troduce the (C)ritica(L)ity (A)ware (M)emory (S)cheduler
(CLAMS) for GPUs, which achieves a fine balance between
core criticality and DRAM access locality.

The CLAMS design comprises four steps. First, it peri-
odically calculates the current level of latency tolerance of
a GPU core. It does so by periodically calculating the frac-
tion of short-latency warps on the core.1 A core is expected
to be more latency tolerant if most of the launched warps
are short-latency warps that execute compute instructions
or that find their required data in privates caches. Second,
CLAMS periodically ranks the cores based on their current
level of latency tolerance, and tags the memory requests
with the core’s rank. The ranking is done in such a way
that the cores that have lower latency tolerance are ranked
lower. Third, based on the value of the rank, CLAMS deter-
mines whether or not a request should be considered critical.
To do so, it uses a criticality-rank threshold (ThCR), which
specifies up to which rank a request should be considered as
critical. Fourth, CLAMS decides whether or not a critical
request should be prioritized in the memory scheduler, by
also taking into account DRAM access (row-buffer) locality.
It does so by periodically calculating the percentage of re-
quests that are considered as critical in the memory request
buffer, and comparing it to a value called the scheduling-
mode threshold (ThSM ). If the percentage of critical re-
quests is below ThSM , CLAMS goes into criticality mode,
where it prioritizes critical requests to ensure cores that can-
not tolerate latency are serviced faster. Otherwise, CLAMS
operates in locality mode, where it optimizes for locality (like
existing schedulers), anticipating that there are too many
critical requests to prioritize one over another.

To our knowledge, this is the first work that observes la-
tency tolerance differences between GPU cores and exploits
such differences to improve GPU resource management, fo-
cusing on memory request scheduling. This paper makes the
following contributions:

• We introduce the concept of core-criticality in GPUs.
We show that all GPU cores do not possess the same latency
tolerance at all times, and this variation in latency tolerance
across cores is one of the key reasons for different levels of
criticality among memory requests, which is not exploited
by current GPU memory request schedulers.

• We introduce the first GPU memory scheduler, CLAMS,
which takes into account core-criticality and achieves a fine
balance between criticality and locality via our new dynamic
criticality estimation mechanism. We propose three different
designs for CLAMS: static, semi-dynamic (Semi-Dyn) and
dynamic (Dyn) based on how required thresholds (ThCR

and ThSM ) are computed, and find that Dyn-CLAMS is the
best performer due to its ability to compute these thresh-
olds at runtime and thereby adapt dynamically to varying
application demands.

1Section 3 describes our exact mechanism to measure the
latency tolerance of a core.

• We present a comprehensive experimental evaluation of
three CLAMS designs as compared to commonly used FR-
FCFS [73,74,93] and FR-FCFS-Cap [62] memory schedulers
using a variety of CUDA applications. Our results show that
Dyn-CLAMS reduces the latency of critical memory requests
by 35%, resulting in an average 9% IPC improvement (maxi-
mum 15%) over the FR-FCFS scheduler, and is within 1% of
an idealized CLAMS design that uses best threshold values
profiled separately for each application. Furthermore, the
performance of none of the evaluated applications degrades
with our mechanism.

2. BACKGROUND AND MOTIVATION
A typical GPU consists of multiple simple cores, also

called streaming-multiprocessors2 [67] in NVIDIA terminol-
ogy. Each core is associated with private L1 data, texture
and constant caches, along with software-managed scratch-
pad memory. The cores are connected to memory channels
(partitions) via an interconnection network. Each mem-
ory partition is associated with a shared L2 cache, and
its associated memory requests are handled by a GDDR5
memory controller. When an application kernel is launched
on a GPU, the memory requests originating from different
cores interfere at various levels of the GPU memory hierar-
chy, such as the interconnect, last-level caches, and main-
memory. At each of these levels, the underlying shared
resource management policies do not consider the source
core-ids of the requests while making decisions, and there-
fore might allocate shared resources across different cores
in an uneven fashion. Our detailed analysis shows that such
uneven allocation can lead to significant variation in average
memory latencies across different GPU cores.
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Figure 1: Average Coefficient of Variation (COV) in memory
access latencies and in IPCs across different GPU cores.

To understand this variation, we calculate the coefficient
of variation (COV) in memory access latencies, which is de-
fined as the ratio of standard deviation over arithmetic mean
of the average memory access latencies experienced by dif-
ferent cores. Figure 1 shows the COV in memory access la-
tencies as well as COV in IPCs across different cores for 11
different CUDA applications, averaged across fixed epochs3,
for three different scenarios: applications when executed on
a GPU that has 1) equal to (1xB), 2) double (2xB), and 3)
quadruple (4xB) the peak memory bandwidth of our base-
line GPU architecture. In the baseline scenario (1xB), we
observe significant COV in latencies across cores for appli-
cations like LUH (13%), RAY (33%), SCAN (19%), and RED

(18%). Because of such variation, many GPU cores experi-
ence higher memory access latencies than others. Therefore,
such cores have a high number of stalling warps on memory,

2In this paper, we use the term core for a streaming-
multiprocessor (SM).
3Epoch length is 10K cycles.
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making them less latency tolerant than other cores. This
might also result in higher stall times for these cores, leading
to significant COV in IPCs across different cores, as shown
in Figure 1.

We observe significant COV in both latencies and IPCs
for RAY, LUH, and RED, stressing the fact that variation in la-
tencies can lead to significant variation in IPCs across cores.
In addition to this observation, we notice two contrasting
cases. First, in SCAN, variation in latencies across cores is
higher than variation in IPCs. This is because SCAN is able
to tolerate higher latencies up to a certain level, which re-
duces the variation in IPCs. Second, in LPS and CFD, much
lower variation in latencies across cores is present compared
to variation in IPCs. This is because CTA and instruction-
mix load imbalance [6,43,54,89] across cores also causes IPC
variation during application execution. Finally, we observe
that increasing the peak memory bandwidth leads to a sig-
nificant decrease in COV in latencies as well as in IPCs, im-
plying that memory bandwidth contention of different cores
in the memory system is a major cause of COV in latencies
as well as in IPCs.

Our goal is to develop a mechanism that prioritizes the
cores that suffer from lower latency tolerance. Improving
the performance of these cores would improve overall system
performance by enabling these cores to make progress (Sec-
tion 3.1). We expect such a mechanism to specifically benefit
those applications that have significant COV in both laten-
cies and IPCs (e.g., RAY, LUH, and RED), and not so for those
applications that have small COV (e.g., BLK, HS). Such a
mechanism can be employed at various levels. For example,
a warp scheduler can be employed to control the progress
of each core separately. However, since the cores contend
for the memory system resources, especially main memory
bandwidth, a memory scheduling mechanism can be more
effective to expedite the requests of cores with lower latency
tolerance, and is therefore the focus of this paper. Thus, in
this work, we design a new GPU memory scheduler that is
aware of the latency tolerance of individual cores.

3. CORE CRITICALITY: BASIC IDEAS

AND METRICS
In this section, we describe and analyze the metrics to

gauge the latency tolerance of a core and its variance across
cores.

3.1 Latency Tolerance as a Measure of
Core Criticality

A GPU core achieves high latency tolerance by hosting a
large number of warps. If some warps get blocked because
of pending DRAM accesses, the remaining warps can con-
tinue their execution and potentially mask the long latency
penalties of the blocked warps. In order to quantify the level
of latency tolerance on a GPU core, we employ a two-step
strategy. The first step is to classify the warps as short-
latency and long-latency warps. The short-latency warps are
the issued warps that do not have any pending memory re-
quest(s). In other words, they are currently executing either
compute instructions or instructions whose required data is
already present in the private caches. Therefore, these short-
latency warps are expected to provide latency tolerance to
the core in the presence of the remaining long-latency warps
whose execution might be blocked for hundreds of cycles due

to pending memory request(s). After classifying the warps
into short-latency vs. long-latency, the second step is to
periodically4 calculate the ratio of short-latency warps over
total issued warps. Note that the sum of short-latency and
long-latency warps is equal to the total issued warps, and
thus this ratio can take a value between 0 and 1. We use
this ratio as a metric to gauge the latency tolerance of a core.
We call it the short-latency ratio. A high value of this ratio
indicates that the core has a high percentage of short-latency
warps, suggesting that the core has high latency tolerance.

We observe in our experiments that, relative change in
IPC and relative change in our latency tolerance metric has
an average correlation of 74% across our application suite
(described in Section 6). This means that improving the
latency tolerance of a core might improve its IPC. We also
observe that a mechanism that prioritizes the memory re-
quests of cores that have lower latency tolerance can have
higher impact on overall performance. For example, it is
more advantageous to make one more additional warp ready
to execute in a core with zero short-latency warps (i.e., a core
with no latency tolerance) compared to doing so in a core
with a large number of short-latency warps (i.e., a core with
enough latency tolerance).

To analyze the criticality of cores, we quantize our latency
tolerance metric, short-latency ratio, into eight equal parts.5

Based on this value, we assign a criticality rank to a core.
Essentially, each equal part of the short-latency ratio cor-
responds to a rank. For example, if this ratio is less than
or equal to 1

8
, the core is considered to be the most critical

and is in rank-1 state. Similarly, if a core’s short-latency ra-
tio is greater than 7

8
, that core is considered to be the least

critical, and is in rank-8 state.
Formally, we consider a core to be critical if the current

rank of the core is less than or equal to a Criticality-Rank-
Threshold (ThCR). In other words, the value of ThCR spec-
ifies up to which rank the core should be considered as
critical. For example, a ThCR value of 4 implies that the
core is considered critical only if its current rank is less than
or equal to rank 4.

3.2 Understanding Variation of Criticality
Across Cores

Not only the latency tolerance of a core can change dur-
ing execution, but we also observe that there is a wide vari-
ation in latency tolerance across GPU cores. To measure
this variation, we introduce a metric, called percentage of
critical cores (PCC), which is defined as the percentage of
GPU cores that are in the critical state. Since a core is
treated as critical based on the chosen value of Criticality-
Rank-Threshold (ThCR), PCC needs to be defined for a
particular value of ThCR. Hence, we define PCC(ThCR)
as the percentage of critical cores (PCC) for a particu-
lar ThCR, where ThCR can take any integer from 1 to 8.
If PCC(ThCR) is 100%, it means that all cores are crit-
ical, and have similar latency tolerance. If PCC(ThCR)
is 0%, it means that all cores are non-critical. In both

4In our experiments, we calculate this ratio over an epoch
of 128 cycles (a threshold that is determined empirically).
5We could divide this ratio into more than eight parts to get
a finer granularity picture of the current latency tolerance of
a core, but our detailed studies show that eight parts provide
sufficient granularity to understand and distinguish between
the latency tolerance of different cores.
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cases, the variation in criticality across cores is insignifi-
cant. On the other hand, if the value of PCC(ThCR) is
in mid-range, then some cores are critical and the remaining
cores are not. Therefore, the value of PCC(ThCR) gives
a notion of the variation in criticality across cores. For
a better understanding of the PCC metric, consider Fig-
ure 2, which shows the rank of three cores of a GPU. We
notice that if ThCR is chosen as 1, PCC is 0%, as all cores
have higher rank than 1 and no core is considered critical.
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Figure 2: Example
demonstrating the PCC
metric.

With ThCR equal to 4, the value
of PCC is 33%, as the rank of
core-3 is less than the chosen
value of ThCR, making it the
only critical core in the system.
With ThCR equal to 7, the value
of PCC is 100%, as all cores are
considered critical because the
rank of every core is less than
ThCR.

We observe that as ThCR in-
creases, the number of criti-
cal cores also increases (or re-
mains the same). Therefore,

PCC(ThCR) also increases (or remains the same) as ThCR

increases from 1 to 8. Formally, [PCC(a) ≥ PCC(b)], if
(a > b).

3.2.1 Analysis of the PCC metric.

Figure 3 shows PCC(ThCR) over time (sampled every 1K
cycles) for four applications, for three different values of
ThCR (ThCR = {1, 4, 7}), over time. We make three main
observations from this figure.
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Figure 3: PCC metric over time with different criticality-
rank thresholds.

Observation I: PCC is dependent on the chosen
criticality-rank threshold. During application execution,
the instantaneous PCC(ThCR) is a function of the chosen
ThCR value. For example, in SCP, values of PCC(ThCR =
1) and PCC(ThCR = 7) at a given time are very differ-
ent. This follows from our previous discussion: as ThCR

increases, the number of critical cores increases, leading to
high PCC values. The other three applications (LUH, RAY,
CONS) also exhibit this trend.

Observation II: PCC varies within an application
over time. Even for a fixed value of ThCR, PCC(ThCR)
may not be constant throughout execution. For example, as

observed prominently in LUH and RAY, PCC(ThCR = 4) can
be different over time, implying that the number of critical
cores for the same value of ThCR is not constant over time.
In CONS, the change in PCC(ThCR) over time is not very
prominent, and PCC(ThCR = 4) is in the mid-range (40-
60%), implying that roughly half the cores are critical.

Observation III: PCC varies across applications.
Across applications, even for the same value of ThCR,
PCC(ThCR) can be very different. For example, at ThCR =
4, RAY and SCP have very different PCC(ThCR = 4) values
(SCP’s is fairly higher than RAY’s). This indicates that, with
ThCR = 4, the number of critical cores for SCP is higher than
that of RAY.

We also analyze the effect of memory bandwidth on the
PCC metric. Figure 4 plots PCC6 for varying amounts of
main memory bandwidth (as described in Figure 1). We
make one major observation:

Observation IV: PCC reduces significantly as main
memory bandwidth increases. This trend is consistent
with our discussions from Section 2 that the variation aver-
age memory latency observed by different cores (i.e., varia-
tion in criticality across different cores) reduces with higher
memory bandwidth.
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Figure 4: Effect of main memory bandwidth on PCC.

4. ANALYZING CRITICALITY IN THE

MEMORY SYSTEM
Cores with low latency tolerance are less likely to toler-

ate the latency of an outstanding memory request, making
their requests more critical. Thus, our goal is to design
a criticality-aware memory-scheduler that takes advantage
of differences in criticality among requests and prioritizes
the latency-critical requests to improve system performance.
One of the important steps in designing such a memory
scheduler is to gauge the variation in criticality across GPU
cores. As discussed in Section 3.2, the PCC(ThCR) metric
is one of the key indicators of existence of different levels
of criticality among cores, and in turn their corresponding
memory requests. If the PCC(ThCR) metric indicates that
the latency tolerance variance across cores exists for a par-
ticular value of ThCR, the memory scheduler can potentially
prioritize requests from cores that have lower ranks. This
is because such cores are more likely to have a large num-
ber of stalled warps that are waiting for memory requests
to be serviced. We can prioritize requests from such cores
to proactively avoid causing these cores to stall. However,
note that as PCC(ThCR) is dependent on ThCR, we need
to carefully examine the PCC(ThCR) values for all possible

6We choose to show results for PCC with ThCR = 1 be-
cause the critical cores at this ThCR have the least latency
tolerance, and reducing PCC(1) by prioritizing the memory
requests of such cores is advantageous for improving overall
performance (Section 3.1).
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values of ThCR, to understand at what level of ThCR does
substantial latency criticality variation across cores exist (if
at all). If the PCC(ThCR) metric does not indicate signifi-
cant variance at any ThCR level, the memory requests from
different cores will have similar latency criticality. If this
is the case, the memory scheduler can focus on preserving
locality (like an existing GPU memory scheduler) since giv-
ing some requests higher priority than others is less likely to
improve system performance.

The calculation of PCC(ThCR) requires global informa-
tion exchange across cores, and the hardware overhead of
calculating this information and then communicating it di-
rectly to the memory controllers (MCs) periodically can be
expensive. Instead, we propose to capture the variations in
latency tolerance across cores directly at the MCs. To do
so, we relay the current latency tolerance level of a core to
the GPU memory scheduler by tagging the memory requests
originating from that core with the core’s current rank, and
then calculating, at the MC, a metric called percentage of
critical requests (PCR), which is defined as percentage of
critical memory requests present in the MC memory request
buffer. Again, because the decision of defining requests (or
cores as we discussed before in Section 3.2) as critical is
dependent on the value of ThCR, we define PCR(ThCR),
which is the percentage of critical requests (the requests that
are tagged with rank values less than or equal to ThCR) in
the MC request buffer. Note that the observations discussed
for PCC(ThCR) in Section 3.2 hold true for PCR(ThCR)
as well. This is because the only difference of PCR(ThCR)
from PCC(ThCR) is that PCR(ThCR) considers criticality
of requests instead of their corresponding cores.

In Figure 5, we plot PCR(ThCR) over time for the same
four applications shown in Figure 3, for the same values of
ThCR = {1, 4, 7}. We observe that in both Figure 3 and Fig-
ure 5, applications have very similar patterns: PCR(ThCR

plots over time, shown in Figure 5, are highly correlated
with the PCC(ThCR) curves shown in Figure 3) Thus, a
criticality-aware memory scheduler could make scheduling
decisions based on PCR(k) ∀k ∈ {1...8} information calcu-
lated locally at the MC, instead of using the global PCC(k),
∀k ∈ {1...8} information.
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Figure 5: PCR metric over time with different criticality-
rank thresholds.

Relaying each core’s rank information to the MC, and
then periodically calculating PCR(ThCR) at the MC has
two primary benefits: (1) this percentage can be calculated

locally at the MC without requiring communication across
MCs, as we just discussed, (2) the calculations to find the
appropriate ThCR value (discussed in Section 5) and other
optimizations can also be done locally at the MCs.
Scope of Criticality Aware Scheduling. To understand
the scope (i.e., potential opportunity) of criticality-aware
memory scheduling in GPU workloads, we investigate the
existence of memory requests with different criticality-ranks
at the MCs at the same time. Figure 6 depicts the distri-
bution of criticality-rank differences across DRAM requests,
where criticality-rank difference is defined as the difference
between the highest and the lowest criticality-rank of the
memory requests present in the MC at the same time. This
data is for one of the MCs (we observe similar distributions
in other MCs), when more than one request is present in
the MC buffer. In Figure 6, diff-0 denotes the percentage
of DRAM cycles during which all the memory requests in
the buffer have the same criticality-rank. Similarly, diff-1
denotes the percentage of DRAM cycles during which the
difference between the highest and the lowest rank of the
memory requests in the MC at the same instant is 1. Note
that as the maximum possible rank is 8, the difference of
the highest and the lowest rank can range from 0 to 7.
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Figure 6: Distribution of criticality-rank differences across
requests in the memory controller.

As we observe from Figure 6, the rank range present in
the MC significantly varies across applications. In applica-
tions such as LUH and RAY, the difference in ranks is sig-
nificant during most of the execution, while in other ap-
plications such as GAUSS and CFD, the difference is 0 most
of the time. Therefore, in these applications, the scope of
criticality-aware memory scheduling is likely to be lower. We
observe that many applications (e.g., RAY, LUH, CONS, RED)
have enough scope for criticality-based prioritization.

We conclude from these results that a memory scheduler
that exploits the criticality differences across different cores’
memory requests has promising scope to improve overall sys-
tem performance.

5. DESIGN AND IMPLEMENTATION

5.1 Design Challenges of CLAMS
We identify two major challenges in designing CLAMS:
(I) Co-existence of critical and non-critical re-

quests. In order to allow criticality-based prioritization, one
of the important challenges is to find ThCR such that both
critical and non-critical requests coexist in the MC buffer.
From our prior discussions, we observe that a high value of
ThCR might lead to too many cores and their corresponding
requests to be considered as critical. On the other hand, a
low value of ThCR might lead to a very small number of cores
and their corresponding requests to be considered as criti-
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cal. In both scenarios, the MC buffer contains either only
critical requests or only non-critical requests. This prevents
the scheduler to take advantage of the differences between
the ranks of the requests in the MC buffer. Therefore, to in-
crease the opportunities for criticality-based prioritization by
distinguishing critical requests from others, it is imperative
to find an appropriate ThCR value that can enable substan-
tial coexistence of both critical and non-critical requests in
the system.

(II) Balancing DRAM access locality and critical-
ity. Even though choosing an appropriate ThCR enables the
co-existence of both critical and non-critical requests in the
system, it might not achieve a good balance between exploit-
ing locality (using the baseline scheduling policy that aims to
maximize row buffer hit rate) and exploiting criticality (us-
ing our new policy that prioritizes critical requests). To ad-
dress this trade-off, we periodically calculate PCR(ThCR) to
switch between scheduling policies optimized for criticality
or locality. Over execution, if PCR(ThCR) is below a thresh-
old, which we call the Scheduling-Mode-Threshold (ThSM ),
the scheduler prioritizes critical requests to ensure that the
cores that cannot tolerate latency are serviced faster. How-
ever, if PCR(ThCR) exceeds ThSM , this implies that the dif-
ferences in latency criticality have become insignificant and
there are too many critical requests to prioritize one over
another. In this case, the scheduler returns to the baseline
mode of prioritizing row buffer hit requests. It is challenging
to find an appropriate value for ThSM , because a too high
value for ThSM would push the scheduler to serve critical
requests for a longer time, potentially hampering locality. A
too low value for ThSM would not provide enough oppor-
tunities for criticality based prioritization. Therefore, it is
important to find an appropriate ThSM value to achieve a
balance between exploiting locality and exploiting criticality.

Table 1 summarizes all metrics and thresholds we consider
to design the CLAMS scheduler. We will make use of these
in our descriptions in the rest of Section 5.

Table 1: List of CLAMS related metrics and thresholds.
Acronym Description

PCC Percentage of GPU cores in the critical state
PCR Percentage of critical memory requests present in the

MC request buffer
PCRb Ratio between the number of critical requests and

the total number of requests, destined to bth bank.
ThCR Specifies the rank up to which the core should be

considered critical.
ThSM Specifies the threshold below which the scheduler

prioritizes critical requests.

5.2 Design Overview of CLAMS
We propose three different schemes for calculating ThCR

and ThSM . The first scheme is called as Static-CLAMS be-
cause it uses a single and fixed set of values for ThCR and
ThSM for all applications. However, we find that these fixed
and independent choices of ThCR and ThSM make it difficult
to simultaneously address the two design challenges (Sec-
tion 5.1). Therefore, our second scheme, called Semi-Dyn-
CLAMS, dynamically calculates ThCR based on: 1) a fixed
value of ThSM , and 2) PCR(k), ∀k ∈ {1...8} information,
calculated within an MC (Section 4). This scheme dynami-
cally finds ThCR but still uses a static value for ThSM . Our
third scheme is called Dyn-CLAMS because it dynamically
calculates both ThCR and ThSM . It uses the same method

as Semi-Dyn-CLAMS to calculate ThCR and then dynam-
ically updates ThSM based on the calculated ThCR. The
thresholds calculated by these schemes are used to deter-
mine the working mode of CLAMS. The two working modes
in which CLAMS scheduler can issue requests to the banks
are locality mode and criticality mode.
Locality mode. This is the default scheduling mode in

which CLAMS is locality-focused. It prioritizes: 1) row-
hit requests over all other requests, 2) critical requests over
other requests, 3) older requests over younger ones. Hence,
if there are no critical requests present, this mode follows
the baseline FR-FCFS scheduling policy [74, 93], which pri-
oritizes: 1) row-hit requests over all other requests, 2) older
requests over younger ones.

Criticality mode. In this mode, CLAMS is criticality-
focused, and optimizes mainly for criticality. It prioritizes:
1) critical requests over all other requests, 2) row hit requests
over other requests, 3) older requests over younger ones.
Hence, if there are no critical requests present, this mode
falls back to the baseline FR-FCFS policy.

Mode Selection. The decision to be in criticality or lo-
cality mode is based on the value of PCR calculated on a per
bank basis, using the per-bank value PCRb(ThCR), which is
defined as the ratio between the number of critical requests
destined to b

th bank and the total number of requests des-
tined to b

th bank. The particular mode is decided based on
Eq.1.

PCRb(ThCR)











≤ ThSM criticality mode

> ThSM locality mode

= 0 criticality = locality mode.

(1)

In the special case, when there are no critical requests
destined to b

th bank (PCRb(ThCR) = 0), criticality and
locality mode follow exactly the same request service order.

Inter-Core vs. Intra-Core Criticality. The goal of
switching to the criticality mode is to prioritize critical mem-
ory requests over other requests belonging to different cores.
However, because of the procedure we follow to tag criti-
cality rank with a memory request, it might happen that
both critical and non-critical requests from the same core
might co-exist in an MC. As our schemes (explained next)
do not explicitly consider core-ids while serving requests, it
might happen that our prioritization mechanism might pre-
fer a critical request over another; both belonging to the
same core. This procedure has limited benefit, because re-
quests from the same core have similar utility unless they
have different intra-core criticality typically caused due to
memory divergence [5, 11]. In our work, we are more inter-
ested in inter-core criticality, which is due to the fact that
different cores have different levels of latency tolerance. Our
detailed analysis shows that our schemes benefit more from
inter-core criticality. On average, in criticality mode, 76% of
the decisions to prioritize critical requests over non-critical
ones are made for requests from different cores.

5.3 Design of the Static-CLAMS Memory
Scheduler

This is the simplest of our proposed schemes. It uses fixed
values for both the thresholds to identify the working mode.
However, such fixed and independent choices for threshold
values make the two design challenges of CLAMS harder
to solve effectively (Section 5.1). To understand this, con-
sider Figure 7, where we show the distribution of memory
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requests for one of the MCs (distribution for other MCs are
similar) across different criticality-ranks when executed on
our baseline architecture that employs FR-FCFS.
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Figure 7: Distribution of requests in different criticality-rank
states.

We observe, from the AVG. bar, that ThCR=4 leads to
co-existence of both critical and non-critical requests in the
MC buffer. However, this value of ThCR does not provide
substantial coexistence in every application. For example in,
SCP, with ThCR=4, a majority of the requests are critical.
Therefore, with this value of ThCR along with ThSM=20%,
the scheduler will be in locality mode most of the time7, as
it will detect that there are too many critical requests in the
MC. On the other hand, with ThSM=80%, the scheduler
will be mostly in criticality mode. This can degrade DRAM
row buffer locality, leading to significant loss in performance.
From this discussion, we conclude that: (1) there is a need
for adapting the ThCR to the executing application, and (2)
ThCR and ThSM should not be determined independently of
each other.

5.4 Design of the Semi-Dyn-CLAMS Memory
Scheduler

The primary goal of Semi-Dyn-CLAMS is to calculate
ThCR with the help of a fixed ThSM value and PCR(k) in-
formation, ∀k ∈ {1...8}8. This procedure achieves two addi-
tional sub-goals. First, Semi-Dyn-CLAMS makes ThCR de-
pendent on ThSM , as it calculates ThCR dynamically based
on the fixed ThSM value. Therefore, Semi-Dyn-CLAMS
does not determine ThCR and ThSM independently, which
is desirable based on the discussion in Section 5.3. Second,
it makes ThCR and ThSM cognizant of all the requests in
the MC request buffer, i.e., the PCR(k), ∀k information.
This is important because as PCR(k) and PCC(k) values
are correlated (Section 4), making ThCR and ThSM aware
of PCR(k), in turn, makes them aware of the current state
of variation in criticality across cores.

To increase the opportunities of driving the memory
scheduler in criticality mode, we dynamically find ThCR

such that the percentage of requests that are critical, de-
noted by PCR(ThCR), is less than or equal to a fixed ThSM

value, but also as close as possible to ThSM . In other words,
we need to find the highest ThCR such that PCR(ThCR) is
less than or equal to a fixed ThSM value. After obtaining

7Note that the actual working mode selection is based on
Eq. 1, where PCRb(ThCR) (and not PCR(ThCR)) is used.
Thus, the actual decision of being in criticality mode or lo-
cality mode is made on a per-bank basis. Section 5.4 pro-
vides more details.
8This information is updated every 512 cycles. We also used
three other sampling size windows (256, 1024, 2048) cycles.
The difference in overall average performance is less than
1%, implying that sampling window size does not have a
significant impact on our design.

ThCR, the scheduler will mostly be in criticality mode be-
cause we have ensured that over a window, PCR(ThCR) is
less than or equal to ThSM . However, after being in critical-
ity mode, if PCR (even with ThCR = 1) exceeds the fixed
value of ThSM , the scheduler switches to locality mode, be-
cause our scheme detects that there are too many critical re-
quests to prioritize and thus the latency tolerance variation
across cores is not significant. Therefore, in such scenarios,
we set ThCR=8, which makes all requests to be considered
critical. Such a value of ThCR value will always drive the
scheduler to locality mode, because PCR(8) is always equal
to 1 and greater than ThSM . We empirically find that ThSM

prefers to be in a mid-range (40% provided the best average
performance results, Section 7). This is expected because,
mid-range percentage of critical requests allows the coexis-
tence of both critical and non-critical requests in MC.

Figure 8 illustrates the operation of Semi-Dyn-CLAMS
over time, where we choose ThSM=40% (❶). Assume only
three values of ThCR = {1,4,7} are possible for illustration
purposes (in our final evaluation, we consider the full range
from 1 to 8). We observe from Figure 8a that, in CONS,
ThCR is chosen as 4 most of the time because this value
of ThCR is the highest possible value of ThCR such that
PCR(ThCR) is less than or equal to ThSM=40%. There-
fore, in CONS, the scheduler will mostly be in criticality mode.
In SCP (Figure 8b), the situation is different. By choosing
the same value of ThSM=40% in the first half of the exe-
cution, the scheduler will be in criticality mode most of the
time, as PCR(1) is lower than ThSM=40%. However, dur-
ing the second half of the execution, SCP prefers locality
mode (❷), where PCR(1) line is above the horizontal line
of ThSM=40% (❶). During this time, there is no ThCR

such that PCR(ThCR) is less than ThSM=40%, and hence
our scheme detects that there are too many critical requests
(even with ThCR=1). We set the scheduler to go in locality
mode by setting ThCR=8.
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Figure 8: Execution of CONS and SCP to illustrate the
working of Semi-Dyn-CLAMS. ThCR values are calculated
dynamically.

Discussion. Recall that the actual mode selection is
based on Eq.1, which compares the value of PCRb(ThCR)
(and not PCR(ThCR)) with the value of ThSM . There-
fore, even though Semi-Dyn-CLAMS selects a value of ThCR

such that PCR(ThCR) is lower than (or equal to) ThSM , it
is not necessary that PCRb(ThCR) will also be lower than
(or equal to) to ThSM . Therefore, even though Semi-Dyn-
CLAMS overall strives to keep the scheduler in the critical-
ity mode, while ensuring that both critical and non-critical
requests have substantial presence in MC, during actual is-
sue of requests to the memory banks, the scheduler can be
in any of the modes – locality or criticality. However, if,
∀k ∈ {1..8}, PCR(k) is greater than the ThSM value, the
scheduler switches to the locality mode by setting the ThCR

7



value to 8. This value of 8 will always switch the scheduler
to the locality mode, because, by definition, both PCR(8)
and PCRb(8) are always equal to 1, and therefore, it will
be always greater than ThSM . We use this analysis as a
foundation for our next scheme.

Importance of PCRb(ThCR) and PCR(k)∀k. For cal-
culating the appropriate ThCR, Semi-Dyn-CLAMS consults
PCR(k), ∀k information, but the scheduler makes actual
decisions on the working modes based on the current set
of requests to be issued to the bank, i.e., by examining
PCRb(ThCR). This has two advantages. First, the actual
mode decision is aware of the current state of the requests
destined to each bank. Second, this decision is also aware of
the status of all the requests in the MC, which, in turn, is
also aware of PCC information.

5.5 Design of Dyn-CLAMS Memory
Scheduler

We find Semi-Dyn-CLAMS to be an aggressive design in
taking advantage of criticality because of two reasons. First,
Semi-Dyn-CLAMS always strives to find opportunities to
work in criticality mode. Second, Semi-Dyn-CLAMS goes
into locality mode only when there are too many critical
requests at ThCR=1 (PCR(1) > ThSM ) in the MC buffer.
Due to these two reasons, we observe significant loss in lo-
cality and performance in some applications (e.g., SCP and
RAY) where locality is very important.

Even though Semi-Dyn-CLAMS calculates a ThCR value
that facilitates the scheduler to be in criticality mode, when
it actually issues requests to the bank, the scheduler might
actually pick locality mode based on the PCRb(ThCR) value
for each bank (Section 5.4). The goal of Dyn-CLAMS is to
improve locality by increasing such opportunities.

To do so, we eliminate one of the important limitations of
Semi-Dyn-CLAMS: that it still uses a fixed value of ThSM .
In other words, in Semi-Dyn-CLAMS, ThCR-ThSM depen-
dence is only one way, and ThSM is not updated based on
the calculated ThCR value. Therefore, the key idea of Dyn-
CLAMS is to first gauge the negative effect of the loss in row-
locality on the latency tolerance (i.e., performance) of the
cores by dynamically examining ThCR, and then restoring
the loss by lowering the value of ThSM as much as possible
while maintaining the same value of ThCR calculated using
Semi-Dyn-CLAMS. This is because, with a lower value of
ThSM , the scheduler is more likely to work in locality mode
(see Eq. 1).

Dyn-CLAMS uses exactly the same procedure as adopted
by Semi-Dyn-CLAMS to calculate ThCR, but in addition,
also lowers ThSM . At the beginning of every window, we
start with a fixed ThSM value (ThSMinit) to determine
ThCR using Semi-Dyn-CLAMS. The value of ThSMinit is
equal to 40%, which we calculated based on extensive ex-

Table 2: Pseudo code for our proposed schemes

Semi-Dyn-CLAMS (Section 5.4)
ThCR = 8.
for k ∈ {1...7} do

if (0 < PCR(k) ≤ ThSM < PCR(k+1)) then
ThCR = k.
end if; end for

return ThCR.

Dyn-CLAMS (Section 5.5)
ThSM = ThSMinit; ThCR = 8.
for k ∈ {1...7} do

if (0 < PCR(k) ≤ ThSM < PCR(k+1)) then
ThCR = k; ThSM = PCR(ThCR).
end if ; end for

if ThCR = 8 then ThSM = 0%. end if
return (ThCR, ThSM ).

perimental evaluation. After calculating ThCR, we update
(lower) the value of ThSM to PCR(ThCR). By doing so,
ThCR remains the same as per Semi-Dyn-CLAMS scheme,
but ThSM is reduced. Thus, both ThCR and ThSM values
are updated dynamically.

Figure 9 illustrates this scheme. For CONS, we observed in
Semi-Dyn-CLAMS (Figure 8) that ThCR is usually 4, but in
Dyn-CLAMS, while maintaining the same ThCR, the value
of ThSM is lowered (pointed by ❶ → ❸) such that it closely
resembles the PCR(4) curve. Similarly, in SCP, the value of
ThSM is lowered to match closely with PCR(1). However,
in cases when SCP prefers locality mode (❷), Semi-Dyn-
CLAMS sets ThCR to 8, and Dyn-CLAMS sets ThSM to
0, making the scheduler work in locality mode. Table 2
formally describes the procedures adopted by our schemes.
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Figure 9: Execution of CONS and SCP to illustrate the
working of Dyn-CLAMS. ThSM is dynamically updated
based on ThCR.

5.6 Hardware Overheads
We describe the hardware overheads of the three flavors

of CLAMS. All three flavors requires logic to tag a memory
request with the criticality of the core that generates it.

Tagging memory requests with core criticality.
Each core is assigned with a rank depending on its current
state of latency tolerance. As the maximum possible num-
ber of warps on a core is 48, we need two 13-bit counters
to store the windowed-average of short-latency and issued
warps over 128 cycles. We calculate the rank using one 13-
bit divider and eight comparators. This rank is stored in a
3-bit register. At the time when a memory request is issued,
we tag the memory request with the corresponding core’s
rank.

(I) Static-CLAMS. Two 8-bit up-down counters per-
bank (max. MC buffer size is 256) are required to track the
number of critical and pending memory requests. For mode
selection, we compare the value of PCRb(ThCR) to a fixed
value of ThSM with the help of comparator. ThCR (3 bits)
and ThSM (7 bits) values are stored as fixed thresholds in
registers at the MC.

(II) Semi-Dyn-CLAMS. We calculate PCR(k) ∀k per
MC over a window of 512 cycles by keeping track of the
critical requests and the number of total requests at the MC.
We need one 9-bit counter per rank and one 9-bit counter
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Table 3: Key configuration parameters of the simulated GPU configuration.

Core Features 1400MHz core clock, 32 cores (streaming multi-processors), SIMT width = 32 (16 × 2),
Greedy-then-oldest first (GTO) dual warp scheduler [67],
Thread-blocks are scheduled on SMs in a load-balanced fashion

Resources / Core 48KB shared memory, 32KB register file, Max. 1536 threads (48 warps, 32 threads/warp)
Private Caches / Core 16KB 4-way L1 data cache, 12KB 24-way texture cache, 8KB 2-way constant cache,

2KB 4-way I-cache, 128B cache block size
Shared L2 Cache 16-way 128 KB/memory channel (768KB in total), 128B cache block size
Features Memory coalescing and inter-warp merging enabled,

immediate post dominator based branch divergence handling
Memory Model 6 GDDR5 Memory Controllers (MC), FR-FCFS scheduling,

256 max. common request buffer for all 8 banks per MC, 924 MHz memory clock
Global address space is interleaved among partitions in chunks of 256 bytes
Hynix GDDR5 Timing, tCL = 12, tRP = 12, tRC = 40, tRAS = 28,
tCCD = 2, tRCD = 12, tRRD = 6, tCDLR = 5, tWR = 12

Interconnect 1 crossbar/direction (32 cores, 6 MCs), 1400MHz interconnect clock, islip VC and switch allocators

to keep track of the pending memory requests. We take a
snapshot of these counters in extra storage, and then flush
the counters. We then calculate PCR(k) ∀k based on the
snapshot values, and store them in 8 PCR(k) registers. To
calculate ThCR, we compare the fixed ThSM value with 8
PCR(k) registers.

(III) Dyn-CLAMS. This scheme updates ThSM with
the value of PCR(ThCR), Thus, it does not require extra
overhead over Semi-Dyn-CLAMS. The information for all
schemes is computed locally at the MCs. The total storage
required for one of the MCs is 43B.

6. EVALUATION METHODOLOGY
We simulate the baseline architecture described in Table 3

using GPGPU-Sim v3.2.1 [6], a cycle-accurate GPU simula-
tor. We studied 11 applications (Table 4) from various suites
such as SDK [66], Rodinia [12], LLNL [42], and SHOC [13].
We classify these applications into two classes. Class-A ap-
plications show high-to-moderate scope for criticality-aware
scheduling because of the presence of variation in criticality
across cores (see Figure 1). The other applications are clas-
sified as Class-B because of low scope for criticality-aware
scheduling (see Figure 6 and Figure 1). All the applications
are executed until completion, except for LUH, CONS, and CFD,
where we execute 500 million instructions.

Table 4: Evaluated applications. Table also shows: 1) Aver-
age occupancy (occ) of a GPU core in terms of warps, 2) Av-
erage ThCR and ThSM calculated using Semi-Dyn-CLAMS
and Dyn-CLAMS, respectively, and 3) % of critical requests
served in criticality-mode with Dyn-CLAMS (%-cri).

Application Abbr. Class occ ThCR ThSM %-cri

Lulesh [42] LUH A 18 4 13% 46
Reduction [13] RED A 15 1 16% 38

Scan [13] SCAN A 14 4 16% 42
Laplace 3D [66] LPS A 11 4 23% 32
Ray Tracing [66] RAY A 16 6 11% 40
Convolution [66] CONS A 15 5 21% 45

Scalar Product [66] SCP B 30 1 10% 66
BlackScholes [66] BLK B 32 2 8% 70

Hotspot [12] HS B 23 6 17% 17
CFD Solver [12] CFD B 45 2 4% 10
Gaussian [12] GAUSS B 8 6 6% 2

7. EXPERIMENTAL RESULTS
In this section, we analyze the performance of three

CLAMS designs, along with two more memory schedulers:
FR-FCFS-Cap-Best and Static-CLAMS-Best. FR-FCFS-

Cap (streak control) scheduler [62] enforces a cap on the
younger row-hit requests that can be serviced before an
older row request to the same bank. When the cap is
reached, FCFS policy is applied. While such a cap alle-
viates the starvation problem for waiting requests, it is not
aware of the criticality of requests it is servicing. We show
the results of FR-FCFS-Cap-Best that picks the best per-
forming cap threshold, profiled separately for each applica-
tion. Evaluated choices for cap values are 2, 4, 6, 8, 12
and 16. Static-Best-CLAMS is the Static-CLAMS sched-
uler that uses the best performing combination of ThCR

and ThSM , profiled separately for each application. In con-
trast to Static-Best-CLAMS, Static-CLAMS uses a single set
of thresholds (ThCR=4 and ThSM=20%) that provides the
best average performance across all applications. The val-
ues of these thresholds are chosen from a pool of 42 (7× 6)
different combinations formed using fixed values of ThCR

(1 through 7) and ThSM (0% through 100% in steps of
20%). Note that both FR-FCFS-Cap-Best and Static-Best-
CLAMS are hard to implement as they require an exhaustive
search across many threshold combinations on a per appli-
cation basis. We observe that the FR-FCFS-Cap results are
very sensitive to thresholds and a single threshold does not
work well for all the applications. Dynamic adaptation of
such thresholds is non-trivial and that is why we propose
CLAMS.
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Figure 10: Performance results normalized to FR-FCFS.

Figure 10 shows the IPC improvement over FR-FCFS
of proposed memory schedulers. We provide two averages,
GMEAN for all applications, and GMEAN-A for only Class-
A applications. We also present auxiliary metrics related to
DRAM and GPU cores in Figure 11. Figure 11a shows the
Row Buffer Hit Rate (RBHR) to measure DRAM locality.
Figure 11b depicts the latency of critical memory requests
(with respective values of ThCR), and Figure 11c shows the
core stall cycles during which GPU cores are not able to is-
sue any warps. Reductions in critical request latencies and
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(c) Core stall cycles

Figure 11: (a) DRAM row buffer hit rate, (b) memory latency of critical requests, (c) core stall cycles. Results are normalized
to FR-FCFS.

core stall cycles are attributed to our prioritization schemes
which favor critical requests. All results are normalized to
the baseline FR-FCFS scheduler.

Analysis of Static-CLAMS. Using a single set of
thresholds (ThCR=4 and ThSM=20%) for all applications
does not lead to significant improvements over FR-FCFS
in SCP and RED. This is expected because with ThCR=4, a
high percentage of requests are treated as critical, and us-
ing ThSM=20% along with it pushes the scheduler to work
mostly in locality mode. However, for LUH, we observe 10%
IPC improvement, because static thresholds address both
the design challenges reasonably (Section 5.1). On aver-
age, Static-CLAMS provides 3% IPC improvement for all
11 applications. Although none of the applications experi-
ence performance degradation, this scheme is still far from
the upper-bound performance achievable with Static-Best-
CLAMS.

Analysis of Semi-Dyn-CLAMS. We first analyze the
dynamic changes in ThCR calculated by the Semi-Dyn-
CLAMS scheme for two applications – SCP and CONS. Fig-
ure 12 shows these results for two fixed values (40%, 80%)
of ThSM . We first start when ThSM=40%. In SCP, Semi-
Dyn-CLAMS chooses ThCR=1 in the first half of the exe-
cution (A ) (as expected from our discussion in Section 5).
In the second half of the execution (B ), we observe many
switches to ThCR=8 as Semi-Dyn-CLAMS detects that
there are too many critical requests and hence switches to
locality mode. In CONS, our scheme chooses ThCR between
4 and 5 and mostly remains in criticality mode. However,
when ThSM is set to 80%, we observe an increase in ThCR

values for SCP in the first half of the execution (A ), and
Semi-Dyn-CLAMS switches to locality mode less often (be-
cause fewer instances are observed where ThCR=8). This is
expected because with a higher ThSM value, the scheduler
will switch to criticality mode more often.
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Figure 12: Changes in ThCR observed with Semi-Dyn-
CLAMS. When ThCR=8, the scheduler is in locality mode.

On average, Semi-Dyn-CLAMS provides 5% IPC improve-
ment over FR-FCFS. RED, RAY, and LPS experience 13%, 7%,
and 5% improvement, respectively. As desired, this scheme
attempts to push the scheduler mostly to criticality mode,
which helps to reduce the latency of critical requests further
by 6% (at the cost of 10% reduction in RBHR) compared
to Static-CLAMS. This in turn reduces the core stall cycles

further by 2% compared to Static-CLAMS (Figure 11c). In
SCP, row buffer hit rate is hampered the most, by 30% (Fig-
ure 11a), leading to 5% performance degradation compared
to FR-FCFS. On the other hand, in RED, even though RBHR
is reduced by 20%, performance improves significantly (by
12%) due to the reduction in critical request latency and
core stall cycles. Our detailed analysis shows that, in RED,
the impact of locality on performance is much lower than
that of criticality, and vice versa in SCP. Our next scheme,
Dyn-CLAMS is expected to recover the loss in locality and
performance by reducing the ThSM value dynamically.

Analysis of Dyn-CLAMS. We first analyze the dy-
namic changes in ThSM calculated by the Dyn-CLAMS
scheme for two applications – SCP and CONS. Figure 13 shows
these changes when ThSMinit = 40% and 80%. We start
with analyzing the ThSM curves when ThSMinit=40%. In
SCP and CONS, we find that the value of ThSM is less than or
equal to 40%. This helps the scheduler to switch to locality
mode more frequently, as discussed in Section 5.5. During
the phases when ThCR=8 (as pointed in Figure 12 by B ),
ThSM value is 0% (B ), pushing the scheduler to always be
in locality mode. For ThSMinit = 80% curves, we observe
that the value of ThSM is much higher due to the increase
in ThCR values.
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Figure 13: Changes in ThSM observed with Dyn-CLAMS.

On average, Dyn-CLAMS performs better than all three
memory scheduling schemes except the upper bound Static-
Best-CLAMS. RED, RAY, and LUH are the best performers
with 15%, 15%, and 10% improvement over FR-FCFS, re-
spectively. This scheme is especially useful for applications
where exploiting locality is at least as important as exploit-
ing criticality. For example, in SCP and RAY, RBHR is im-
proved by 5% and 7%, respectively (Figure 11a), leading to
additional benefits over Semi-Dyn-CLAMS. We also observe
reduction in PCC(1) for these applications (22%, 25%, and
6%, respectively), as expected from our discussion in Sec-
tion 3.2.

We further observe from Figure 10 that the gap between
Dyn-CLAMS and Static-CLAMS-Best is not significant for
many applications, suggesting that Dyn-CLAMS is able to
dynamically calculate the best static combinations of thresh-
olds for each application, as shown in Table 4, without the
need for any offline application profiling. We also report the
percentage of critical requests that are served in criticality
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mode (%-cri) in Table 4. For SCP and BLK, even though %-
cri is very high, Dyn-CLAMS does not show benefit because
the number of critical requests is small. For Class-A applica-
tions, %-cri is significant, which shows that Dyn-CLAMS is
able to improve performance by prioritizing critical requests.
In summary, Dyn-CLAMS achieves 9% IPC improvement
over FR-FCFS, 5% over FR-FCFS-Cap-Best, and also is
within 1% of the Static-CLAMS-Best for Class-A applica-
tions. The performance of none of the Class-B applications
degrades with our third, most dynamic scheme.
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Figure 14: Useful, wasted, and idle DRAM bandwidth dis-
tribution with baseline FR-FCFS ad Dyn-CLAMS.

To get a deeper understanding into these performance
results, Figure 14 shows the break down of the memory
bandwidth for FR-FCFS and Dyn-CLAMS schemes into
the following components: (A) Useful-BW: the percentage
of DRAM cycles during which the application moves data
(reads and writes) over the DRAM interface, (B) Wasted-
BW: the percentage of DRAM cycles during which no data
is transferred over the DRAM interface due to DRAM tim-
ing constraints 9, but there are pending memory requests in
the MC buffer, and (C) Idle-BW: the percentage of DRAM
cycles during which there are no requests pending in the
MC buffer, and hence DRAM is idle. We observe that IPC
and Useful-BW are highly correlated, which is consistent
with the findings shown by Guz et al. [31, 32]. We further
observe that Wasted-BW increases in LUH and RAY with Dyn-
CLAMS because of the loss in RBHR. This is expected as
the loss in locality causes more row conflicts. However, in
SCAN, in spite of the reduction in RBHR, we observe negligi-
ble reduction in Wasted-BW. This is because Dyn-CLAMS
enables more cores to be active at a time, allowing requests
from more cores to take advantage of BLP. This increase in
BLP helps to mask the negative effects of the loss in locality.

Brief Summary of Sensitivity Studies. For Semi-
Dyn-CLAMS, increasing the ThSM value from 20% to
40% improves the performance of applications (e.g., CONS,
RED) that prefer the criticality mode. However, beyond
ThSM=40%, performance of most applications (except RED)
saturates. Performance starts declining after ThSM=60%
due to the steep decrease in RBHR. We observe similar
trends for ThSMinit in Dyn-CLAMS. On average, a value
of 40% for both ThSM and ThSMinit leads to the best av-
erage performance results across all our applications.

8. RELATED WORK
To our knowledge, this is the first paper that develops (1)

the notion of core criticality in GPU systems, (2) mecha-
nisms to dynamically estimate core criticality for different
GPU cores, and (3) techniques that use such criticality es-

9Note that, improving RBHR and bank-level parallelism
(BLP) can reduce this Wasted-BW.

timation mechanisms to improve GPU performance via so-
phisticated memory request scheduling. As such, this paper
is related to past works on criticality estimation in CPUs,
memory scheduling (for both GPUs and CPUs), and in gen-
eral other scheduling mechanisms in GPUs. We briefly sum-
marize the prior work related to this paper in these broad
categories.

Criticality Related Studies in CPUs. There have
been several works that identified critical instructions [10,
21–23, 78, 79, 81], critical threads [8, 9, 17, 20, 36, 37, 86],
critical applications [14, 18, 47, 48, 63], critical memory re-
quests [4, 26,33,34, 45,51,70,87], and critical network pack-
ets [15,16,29,30], within the context of a CPU system, and
developed mechanisms to analyze and/or prioritize them.
None of these works identify or exploit the notion of core
criticality we describe and analyze in this paper, which is
specific to GPU systems. Srinivasan et al. [78] contrasts crit-
icality and locality by performing a limit study that gives
the maximum potential of exploiting critical memory re-
quests. A follow-up work [79] gives a practical algorithm
for identifying critical memory requests within the context
of CPUs that employ out-of-order execution and explores
caching mechanisms for exploiting both criticality and lo-
cality. Other works, mentioned above, take advantage of
criticality information of various entities, including instruc-
tions, threads, applications, memory requests, and network
packets, by developing different notions of criticality. In
comparison, the criticality notion we introduce and exploit
in this paper is based on the latency tolerance of a GPU
core, which is very different from that of prior works.

Memory Scheduling in CPUs. Several works ex-
ploited various notions of criticality for memory request
scheduling in CPU systems. Ebrahimi et al. [20] propose
parallel application memory scheduling, where the memory
scheduler prioritizes critical threads in multi-threaded CPU
programs, where critical threads are estimated to be those
that are likely on the critical path of execution. Ghose et
al. [26] use load criticality information for effective mem-
ory scheduling in CPU systems. In contrast to their static
memory controller policy that always favors critical requests,
we develop memory scheduling mechanisms that can dy-
namically switch between criticality and locality modes.
Ausavarungnirun et al. [4] propose a memory scheduler to
maintain row-buffer locality in CPU-GPU fused architec-
tures while providing high CPU performance. Our insights
can be combined with the insights of this work: if we want
to use our techniques for GPUs present in the CPU-GPU
fused architectures [4, 44], we should also consider latency
tolerance of CPU cores and include that information in the
prioritization mechanisms at the memory controller.

There are numerous other memory scheduling tech-
niques [19, 33, 46–48, 52, 53, 60–63, 65, 71, 76, 82–85, 87, 92]
designed for various goals in multi-core and multi-threaded
systems. None of these works are designed for GPUs and,
hence, their notion of request criticality, when it exists, is
very different from our notion of core criticality.

Memory Scheduling in GPUs. Lakshminarayana et
al. [50] explored a DRAM scheduling policy that chooses be-
tween two policies: Shortest Job First (SJF) and FR-FCFS.
Their scheme uses a statically determined parameter that
needs to be uniquely calculated for each application. As this
scheduler does not adapt to dynamic needs of criticality and
locality in the application, it can potentially degrade per-
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formance compared to FR-FCFS [50]. On the other hand,
CLAMS dynamically detects the preferred mode (locality or
criticality) for applications at runtime and switches between
two modes: Criticality and Locality. Due to its heavily dy-
namic nature in adapting thresholds used to workload char-
acteristics, we find that our mechanism does not degrade any
workload’s performance. Yuan et al. [91] propose an arbi-
tration mechanism in the interconnection network to restore
the lost row buffer locality caused by the interleaving of re-
quests. They showed that performance of in-order DRAM
is competitive to FR-FCFS. In this paper, we show quali-
tatively and quantitatively that CLAMS outperforms FR-
FCFS. Ausavarungnirun et al. [5] develop a technique that
can prioritize some warps over others based on the latency
tolerance characteristics of the warps. Our core-level criti-
cality based mechanisms can be combined with such warp-
level criticality based mechanisms for higher performance
improvements.

Warp Scheduling in GPUs. Narasiman et al. [64] and
Gebhart et al. [25] proposed two-level warp schedulers to im-
prove latency tolerance and energy consumption in GPUs,
respectively. Rogers et al. [75] and Jog et al. [41] pro-
posed warp schedulers to reduce contention in caches. Lee
et al. [54] proposed a criticality-aware warp scheduler that
prefers critical warps over others for better latency tolerance.
None of these works specifically coordinate with the under-
lying memory schedulers for orchestrated warp and memory
scheduling decisions. CLAMS provides a substrate to foster
such research, as it incorporates the core-criticality informa-
tion while making memory scheduling decisions.

9. CONCLUSIONS
We introduce the notion of core criticality in GPUs, a

measure of latency tolerance of a GPU core, and a new GPU
memory scheduler, called CLAMS, which exploits this new
measure to improve GPU performance. Our scheduler takes
into account the latency tolerance of GPU cores and priori-
tizes memory requests from such cores, when doing so would
be beneficial. CLAMS dynamically determines the impor-
tance of exploiting core criticality versus exploiting DRAM
locality by monitoring the fraction of critical requests in
the memory request buffers. As such, it can adapt well to
changing workload demands by swiftly switching between
two scheduling policies optimized for criticality and locality.
Our evaluations show that CLAMS provides significant per-
formance benefits for the class of applications that exhibit
high variance in criticality across cores, without hurting the
performance of other applications. We conclude that con-
sidering core criticality is a promising way to improve GPU
performance and hope future works can take advantage of
the notion of core criticality for other system optimizations.
In particular, we believe a promising area of research is to ex-
plore this notion within the context of heterogeneous CPU-
GPU memory systems.
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